Writing Equations - Quick Reference

Slope Intercept Form

$$
\mathrm{y}=\mathrm{mx}+\mathrm{b}
$$

If you know the slope (or rate) and the y-intercept (or constant), then you can easily write an equation in slope intercept form.

Example: If you have a slope of $\mathbf{3}$ and \mathbf{y}-intercept of $\mathbf{- 4}$, the equation can be written as:

Writing Equations Given Slope and a Point

If you are given slope and a point, then you are given m, x, and y for the equation

$$
y=m x+b .
$$

You must have slope (\mathbf{m}) and the \mathbf{y}-intercept (b) in order to write an equation.

Step 1: Substitute m, x, y into the equation and solve for b.

Step 2: Use m and b to write your equation in slope intercept form.

Example: Write an equation for the line that has a slope of 2 and passes through the point (3,1).

$$
m=2, \quad x=3 \quad y=1
$$

$y=m x+b$
$1=2(3)+b \quad$ Substitute for m, x, and y.
$1=6+b \quad$ Simplify $(2 \cdot 3=6)$
$1-6=6-6-+b \quad$ Subtract 6 from both sides.
$-5=b$
Simplify ($1-6=-5$)
$y=2 x-5 \quad$ Write your equation.

Writing an Equation Given Two Points If you are given two points and asked to write an equation, you will have to find the slope and the y-intercept!

Step 1: Find the slope using: $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Step 2: Use the slope (from step 1) and one of the points to find the y-intercept.

Step 3: Write your equation using the slope (step 1) and \mathbf{y}-intercept (step 2).

Example: Write an equation for the line that passes through (1,6) (3,-4).

Step 1: $\quad \frac{-4-6}{3-1}=\frac{-10}{2}=-5 \quad$ Slope $=-5$
Step 2: $y=m x+b \quad m=-5$
$y=m x+b$
$6=-5(1)+b$
$6=-5+\mathrm{b} \quad$ Simplify: $-5(1)=-5$.
$6+5=-5+5+\mathrm{b} \quad$ Add 5 to BOTH sides.
$11=\mathrm{b} \quad$ Simplify $(6+5=11)$.

$$
\text { Y-intercept = } 11
$$

Step 3: $y=-5 x+11$

$$
\begin{aligned}
& \text { Standard Form } \\
& \text { Ax }+B y=C
\end{aligned}
$$

The trick with standard form is that \mathbf{A}, \mathbf{B}, and \mathbf{C} must be integers AND A must be a positive integer!

Examples:

$-3 x+2 y=9 \quad$ Incorrect! -3 must be positive (multiply all terms by -1)
$3 x-2 y=-9$
integers and A is a positive integer.

